Tag Archive | Big Bang

Από τη Μεγάλη Έκρηξη, στην επιβεβαίωσή της…

Ακολουθώντας το «Big Bang» και την απαρχή του Σύμπαντος

Μπορεί ο Νότιος Πόλος να είναι ένα από τα πιο αφιλόξενα μέρη στον πλανήτης μας, όμως οι αστρονόμοι έχουν διαφορετική άποψη.

Γι’ αυτούς το εργαστήριο Dark Sector Laboratory είναι κάτι σαν τον «παράδεισο», όπου η παγωμένη και ξηρή ατμόσφαιρα επιτρέπει στα φωτόνια να ταξιδεύουν σχεδόν ανεμπόδιστα, παρέχοντάς τους με αυτόν τον τρόπο τις πιο ευκρινείς εικόνες του διαστήματος που έχουν τραβηχτεί ποτέ από τη Γη.

Από τη Μεγάλη Έκρηξη, στην επιβεβαίωσή της...

Επί τρία χρόνια μια ομάδα αστρονόμων με επικεφαλής τον John Kovac από το Κέντρο Αστροφυσικής Harvard-Smithsonian, συγκέντρωνε στοιχεία από το τηλεσκόπιο Bicep2 (Background Imaging of Cosmic Extragalactic Polarization).

Τον περασμένο Μάρτη δημοσίευσαν τα αποτελέσματα των ερευνών τους.

Αν τα συμπεράσματά τους ευσταθούν, τότε ίσως έχουν ανοίξει ένα νέο «παράθυρο» στις απαρχές του Σύμπαντος και η έρευνά τους θα συγκαταλεχθεί σε μία από τις πιο σημαντικές κοσμολογικές αποκαλύψεις του αιώνα, γράφει ο Brian Greene για το Smithsonian Magazine.

Από το κυρτό Σύμπαν στη Μεγάλη Έκρηξη (Big Bang)

Στις αρχές του 20ου αιώνα ο Αϊνστάιν έγραψε ξανά τους κανόνες του χωροχρόνου με τη θεωρία της Σχετικότητας.

Μέχρι τότε, σχεδόν όλοι συμφωνούσαν με τη νευτώνεια προοπτική, σύμφωνα με την οποία ο χώρος και ο χρόνος παρέχουν μια αμετάβλητη αρένα, μέσα στην οποία συμβαίνουν τα πάντα.

Το 1915 ο Αϊνστάιν παρουσίασε τη γενική θεωρία της σχετικότητας, σύμφωνα με την οποία η ελκτική δύναμη της βαρύτητας διαδίδεται στο χώρο με την ταχύτητα του φωτός και επηρεάζει οτιδήποτε υπάρχει στο χώρο, ακόμα και τις ακτινοβολίες, κάτι που καθιστά δυνατή την ύπαρξη μελανών οπών, φαινόμενο που παρατηρήθηκε πολύ αργότερα, όπως σημειώνει η Wikipedia.

Όσο αφηρημένη κι αν ήταν η διατύπωσης της θεωρίας της γενικής σχετικότητας, καθιστούσε δυνατές οριστικές προβλέψεις, μερικές από τις οποίες επιβεβαιώθηκαν σύντομα με αστρονομικές παρατηρήσεις.

Αυτό ενέπνευσε μαθηματικά προσανατολισμένους στοχαστές σε όλο τον κόσμο να εξερευνήσουν λεπτομερώς τις προεκτάσεις της θεωρίας αυτής.

Το 1927 ο βέλγος ιερέας Georges Lemaître, ο οποίος κατείχε διδακτορικό στη Φυσική, εφάρμοσε τις εξισώσεις της θεωρίας της γενικής σχετικότητας του Αϊνστάιν σε όλο το Σύμπαν, και όχι απλά σε αντικείμενα μέσα σε αυτό, όπως τα αστέρια και οι μαύρες τρύπες.

Οι μαθηματικές πράξεις έδειξαν ότι το Σύμπαν δε μπορούσε να είναι στατικό: το «ύφασμα» του σύμπαντος είτε επεκτεινόταν ή συρρικνωνόταν.

Το 1929 οι αστρονομικές παρατηρήσεις του Edwin Hubble με τη βοήθεια του πανίσχυρου τηλεσκοπίου στο παρατηρητήριο Mount Wilson Observatory, αποκάλυψαν ότι οι μακρινοί γαλαξίες… έφευγαν ακόμη πιο μακριά.
Το Σύμπαν επεκτεινόταν.

Όπως είχε υποστηρίξει ο Lemaître, αν το σύμπαν επεκτείνεται τώρα, τότε αν κάποιος σκεφτόταν αντίστροφα θα κατέληγε στο συμπέρασμα ότι κάποτε το σύμπαν ήταν πιο μικρό, πιο πυκνό και πιο θερμό.

Και κάπως έτσι καταλήγουμε στη θεωρία της Μεγάλης Έκρηξης (Big Bang).

Αν όμως αυτό είναι αλήθεια, τι είναι αυτό που οδηγεί το Σύμπαν στην επέκταση και πώς θα μπορούσε να ελεγχθεί αυτή η θεωρία;

Η θεωρία του πληθωρισμού

Αν το Σύμπαν προέκυψε από ένα πολύ θερμό και πυκνό αρχέγονο άτομο, όπως το αποκαλούσε ο Lemaître, τότε καθώς επεκτεινόταν θα έπρεπε να ψύχεται.

Σύμφωνα με τους υπολογισμούς ερευνητών από το πανεπιστήμιο George Washington τη δεκαετία του 1940 και δύο δεκαετίες αργότερα στο Princeton, η υπολειπόμενη θερμότητα της Μεγάλης Έκρηξης θα ήταν κάτι σαν ένα «λουτρό από φωτόνια» που θα απλώνονταν ομοιόμορφα στο διάστημα. Η θερμοκρασία των φωτονίων θα ήταν περίπου 2,7 βαθμοί πάνω από το 0, τοποθετώντας το μήκος κύματός τους στο τμήμα μικροκυμάτων του φάσματος, παρέχοντας μια εξήγηση γιατί αυτά τα πιθανά «λείψανα» του Big Bang ονομάζονται κοσμική μικροκυματική ακτινοβολία υποβάθρου.

Το 1964 δύο ερευνητές από το εργαστήριο Bell Telephone Laboratories, οι Arno Penzias και Robert Wilson, κατασκεύαζαν ένα ραδιοφωνικό δέκτη (κεραία) και έπιασαν υψηλότερες θερμοκρασίες (ακτινοβολία) από αυτές που περίμεναν.

Αρχικά, πίστεψαν ότι αυτή η ανωμαλία οφειλόταν στα περιστέρια και τις κουτσουλιές που άφηναν πίσω τους, όμως παρότι καθάρισαν και… εξαφάνισαν τα περιστέρια που είχαν φωλιάσει μέσα στην κεραία, η «ανωμαλία» αυτή επέμενε.

Την ίδια περίοδο, μια ερευνητική ομάδα από το πανεπιστήμιο Πρίνστον, με επικεφαλής τον Robert Dicke, προσπαθούσε να βρει αποδείξεις για την κοσμική ακτινοβολία υποβάθρου. Οι ερευνητές συνειδητοποίησαν, ότι αυτό που έψαχναν το είχαν ανακαλύψει οι Penzias και Wilson.

Και οι δύο ομάδες δημοσίευσαν τις μελέτες τους στο επιστημονικό περιοδικό Astrophysical Journal το 1965.
Οι Penzias και Wilson κέρδισαν το 1978 βραβείο Νόμπελ για την ανακάλυψή τους.

Ωστόσο, ενώ η θεωρία της Μεγάλης Έκρηξης εξηγούσε πώς εξελίχθηκε το Σύμπαν μερικά δευτερόλεπτα μετά το Big Bang, δε μπορούσε να δώσει μια απάντηση για το πώς ξεκίνησε.

Ο μεταδιδακτορικός ερευνητής στο τμήμα Φυσικής του πανεπιστημίου Stanford, Alan Guth, «κάλυψε» αυτό το κενό.

Μαζί με το συνεργάτη του Henry Tye από το πανεπιστήμιο Cornell προσπαθούσαν να κατανοήσουν πώς ορισμένα υποθετικά σωματίδια, που ονομάζονται μονόπολα, θα μπορούσαν να παραχθούν τις πρώτες στιγμές του σύμπαντος.

Στις 6 Δεκεμβρίου του 1979 ο Guth συνειδητοποίησε, ότι οι εξισώσεις επάνω στις οποίες εργαζόταν δεν έδειχναν μόνο ότι η γενική θεωρία της σχετικότητας κάλυπτε ένα κενό στη νευτώνεια βαρύτητα, αλλά αποκάλυπταν ακόμη πως η βαρύτητα μπορούσε να συμπεριφερθεί με απροσδόκητο τρόπο, προσθέτει ο αρθρογράφος.

Σύμφωνα με το Νεύτωνα –και την καθημερινή εμπειρία όλων- η βαρύτητα είναι μια ελκτική δύναμη. Οι εξισώσεις όμως «έλεγαν» στον Guth ότι η βαρύτητα μπορούσε να είναι και αποκρουστική και να ωθεί προς τα έξω.

Μια ελάχιστη περιοχή, λοιπόν, με την κατάλληλη ενέργεια θα μπορούσε να επεκταθεί από την ισχυρή απωστική βαρύτητα, ενδεχομένως και να επεκταθεί τόσο, όσο το παρατηρήσιμο σύμπαν σε ένα κλάσμα του δευτερολέπτου.
Και αυτό θα αποκαλούνταν ένα «bang».

Ένα «big bang».

Και κάπως έτσι, ο Guth μαζί με τους Andrei Linde, Paul Steinhardt και Andreas Albrecht «γέννησαν» τη θεωρία του πληθωρισμού στην κοσμολογία.

Έχουν όμως δίκιο;

Τεστάροντας τη θεωρία του πληθωρισμού

Στις 12 Μαρτίου το Κέντρο Αστροφυσικής Harvard-Smithsonian εξέδωσε μια ανακοίνωση στον Τύπο, υποσχόμενο μια «τεράστια ανακάλυψη».

Στις 17 Μαρτίου, μετά από πάνω από ένα χρόνο προσεκτικών αναλύσεων όλων των δεδομένων που είχαν συλλεχτεί με τη βοήθεια του τηλεσκοπίου Bicep2, η ερευνητική ομάδα ανακοίνωσε ότι είχε εντοπίσει βαρυτικά κύματα από τις πρώτες στιγμές δημιουργίας του Σύμπαντος.

Πώς διάβασαν την «υπογραφή» της Μεγάλης Έκρηξης

Η άμεση παρατήρηση βαρυτικών κυμάτων που προέρχονται από τη γέννηση του Σύμπαντος αποτελεί σταθμό για τη Φυσική. Επιβεβαιώνει τη θεωρία του πληθωρισμού και ανοίγει νέους δρόμους για μια «θεωρία των Πάντων»
istoria sympantos
Τα βαρυτικά κύματα είναι η τελευταία από τις προβλέψεις της Γενικής Θεωρίας της
Σχετικότητας που δεν έχει ακόμη επαληθευθεί πειραματικά και ο πληθωρισμός είναι μια θεωρία που ερμηνεύει την ομοιομορφία του Σύμπαντος με την υπόθεση ότι λίγο μετά τη δημιουργία του αυτό διαστελλόταν με ταχύτητες μεγαλύτερες από την ταχύτητα του φωτός. Την περασμένη Δευτέρα αμερικανοί αστρονόμοι ανακοίνωσαν ότι παρατήρησαν τα ίχνη της εκπομπής βαρυτικών κυμάτων κατά τη διάρκεια της πληθωριστικής φάσης του Σύμπαντος, αμέσως μετά τη στιγμή της Μεγάλης Εκρηξης. Η ανακάλυψη αυτή έχει ιστορική σημασία, όχι τόσο επειδή επιβεβαιώνει την ύπαρξη των βαρυτικών κυμάτων όσο επειδή είναι η πρώτη χειροπιαστή ένδειξη – αν όχι απόδειξη – της θεωρίας του πληθωριστικού Σύμπαντος. Και μπορεί επιπλέον να έχει ανοίξει ένα παράθυρο ελέγχου των θεωριών που προσπαθούν να ενοποιήσουν τις τρεις από τις τέσσερις βασικές δυνάμεις της φύσης, καθώς και αυτών που προσπαθούν να συνδέσουν τη βαρύτητα με την κβαντομηχανική.

Clem Pryke, Jamie Bock, Chao-Lin Kuo, John Kovac
Περιχαρείς κατά τη συνέντευξη Τύπου της περασμένης Δευτέρας στο Κέντρο Αστροφυσικής Χάρβαρντ-Σμιθσόνιαν οι επιστήμονες (από αριστερά) Κλεμ Πράικ, Τζέιμι Μποκ, Τσάο-Λιν Κούο και Τζον ΚόβακΤην περασμένη Δευτέρα 17/3/2014 η ερευνητική ομάδα του προγράμματος BICEP2 ανακοίνωσε μια ανακάλυψη εξαιρετικής σημασίας: την ανίχνευση βαρυτικών κυμάτων κατά τις πρώτες στιγμές της δημιουργίας του Σύμπαντος. Τα νέα προκάλεσαν μεγάλη αίσθηση αφού, όπως έγραψε ο αμερικανός κοσμολόγος Σον Κάρολ (Sean Carroll): «Πέρα από την ανακάλυψη ζωής σε άλλους πλανήτες ή την άμεση ανίχνευση σκοτεινής ύλης, δεν μπορώ να σκεφθώ κάποια άλλη ανακάλυψη αστρονομικής φύσης πιο σημαντική στην κατανόηση του Σύμπαντος από αυτήν που μόλις ανακοινώθηκε». Είναι λοιπόν φυσικό να προεξοφλείται η επιβράβευση αυτής της ανακάλυψης με το βραβείο Νομπέλ Φυσικής. Στη συνέχεια θα δούμε αναλυτικά τόσο το τι ακριβώς παρατηρήθηκε και ποια σημασία έχει στο πλαίσιο της Γενικής Θεωρίας Σχετικότητας και της Κοσμολογίας όσο και το πώς ακριβώς επιτεύχθηκε αυτή η ανίχνευση, δηλαδή το όργανο που χρησιμοποιήθηκε και ο τρόπος με τον οποίο αναλύθηκαν οι παρατηρήσεις.

Τι είναι τα βαρυτικά κύματα
Από τις αρχές της δεκαετίας του 1930 είχε γίνει κατανοητό ότι η Γενική Θεωρία της Σχετικότητας, που είχε διατυπωθεί από τον Αϊνστάιν 15 χρόνια νωρίτερα, προέβλεπε την ύπαρξη βαρυτικών κυμάτων, δηλαδή διαταραχών του χώρου και του χρόνου που διαδίδονται στο Σύμπαν με την ταχύτητα του φωτός. Η προσπάθεια ανίχνευσης αυτών των κυμάτων έχει ξεκινήσει από τη δεκαετία του 1960, αλλά ως σήμερα δεν έχει επιτευχθεί η άμεση παρατήρησή τους, παρά την κατασκευή ολοένα και πιο ευαίσθητων ανιχνευτών, επειδή το πλάτος τους είναι πολύ μικρό. Η άμεση παρατήρηση βαρυτικών κυμάτων σίγουρα θα επιβραβευθεί με ένα βραβείο Νομπέλ, αλλά σχεδόν κανείς δεν αμφιβάλλει για την ύπαρξή τους, αφού υπάρχουν πάρα πολλές έμμεσες παρατηρήσεις που επιβεβαιώνουν την ύπαρξή τους. Έτσι η άμεση παρατήρησή τους δεν θα αλλάξει κάτι σημαντικό στην αντίληψή μας για το Σύμπαν. Αντίθετα, οι πρώτες στιγμές του Σύμπαντος είναι σήμερα ένα αντικείμενο έντονης ερευνητικής προσπάθειας και με πολλές εναλλακτικές θεωρίες, επειδή δεν υπάρχουν αρκετά πειραματικά δεδομένα που θα μας βοηθήσουν να απορρίψουμε μερικές από αυτές προς όφελος των υπολοίπων.
Ο αστραπιαίος πληθωρισμός
./b_over_b_rect.eps
Διάγραμμα της διεύθυνσης της πόλωσης συναρτήσει της θέσεως που δείχνει τη μορφή πόλωσης του τρόπου-Β

Η επικρατέστερη θεωρία για τα πρώτα στάδια του Σύμπαντος είναι αυτή του πληθωρισμού, η οποία διατυπώθηκε το 1980 για να ερμηνεύσει το γεγονός ότι για αποστάσεις πολύ μεγαλύτερες από τις αποστάσεις μεταξύ των γαλαξιών το Σύμπαν είναι ομογενές και ισότροπο. Αυτό σημαίνει ότι το Σύμπαν έχει τις ίδιες ιδιότητες σε όλα τα σημεία του, καθώς και ότι δεν υπάρχει κάποια κατεύθυνση σε αυτό που να έχει ιδιαίτερες ιδιότητες. Επιπλέον η θεωρία του πληθωρισμού εξηγεί γιατί το Σύμπαν είναι πρακτικά επίπεδο, ιδιότητα που έχει πολλές συνέπειες, μία από τις οποίες είναι το γνωστό συμπέρασμα του Ευκλείδη ότι το άθροισμα των γωνιών ενός τριγώνου είναι 180 μοίρες. Σύμφωνα λοιπόν με τη θεωρία του πληθωριστικού Σύμπαντος, μία μόλις στιγμή μετά τη Μεγάλη Έκρηξη και για ένα πολύ μικρό χρονικό διάστημα, μόλις 10-32 δευτερόλεπτα (δηλαδή, δέκα δισεκατομμυριοστά του τρισεκατομμυριοστού του τρισεκατομμυριοστού του δευτερολέπτου), το Σύμπαν διεστάλη με ασύλληπτη ταχύτητα, πολύ μεγαλύτερη από την ταχύτητα του φωτός. Η αιτία και οι λεπτομέρειες αυτής της ταχύτατης διαστολής, που ονομάστηκε πληθωρισμός, δεν είναι ξεκάθαρες, μια και υπάρχουν πολλές διαφορετικές θεωρίες. Θα ήταν λοιπόν πολύ σημαντικό να βεβαιωθούμε, πρώτον, αν υπήρξε κατ’ αρχάς εποχή πληθωρισμού κατά τη νεαρή ηλικία του Σύμπαντος και, στην περίπτωση που η απάντηση είναι θετική, να δούμε ποιες από τις θεωρίες που προτείνουν τον πληθωρισμό συμφωνούν με τις παρατηρήσεις.

Το ίχνος της παγωμένης λάμψης
Στόχος των παρατηρήσεων της ομάδας BICEP2 ήταν η καταγραφή με απαράμιλλη λεπτομέρεια της μικροκυματικής ακτινοβολίας υποβάθρου, όπως ονομάζεται ο «απόηχος» της Μεγάλης Έκρηξης τη σημερινή εποχή. Η «λάμψη» εκείνης της εποχής ψύχθηκε λόγω της διαστολής του Σύμπαντος και από το ελάχιστο μήκος κύματος των ακτίνων-γ έφτασε σήμερα να έχει μήκος κύματος της τάξεως του ενός εκατοστόμετρου, στην περιοχή των μικροκυμάτων. Η ακτινοβολία αυτή είναι η μοναδική πληροφορία που έχουμε για τις απαρχές του Σύμπαντος, αλλά δυστυχώς έχει εκπεμφθεί 380.000 χρόνια μετά τη Μεγάλη Έκρηξη, οπότε θα έλεγε κανείς ότι δεν μας επιτρέπει να «δούμε» τις πρώτες στιγμές του Σύμπαντος. Αυτό όμως δεν είναι σωστό επειδή στις πρώτες εκείνες στιγμές υπήρχαν και έντονα βαρυτικά κύματα, πέρα από τα φωτόνια, με αποτέλεσμα τα φωτόνια να «συγκρούονται» με τα βαρυτικά κύματα και να αποκτούν ιδιότητες χαρακτηριστικές αυτών των «συγκρούσεων».
Η πιο σημαντική από αυτές τις ιδιότητες είναι η πόλωση του φωτός, δηλαδή η ταλάντωση των φωτεινών κυμάτων σε μια προτιμητέα διεύθυνση. Αν λοιπόν καταγράψουμε την πόλωση της μικροκυματικής ακτινοβολίας υποβάθρου, θα μπορέσουμε να δούμε αν συμφωνεί με την ύπαρξη πληθωριστικής περιόδου στο Σύμπαν, καθώς και με τα ποσοτικά χαρακτηριστικά της, για παράδειγμα την ταχύτητα διαστολής και τη διάρκεια του φαινομένου. Σήμερα υπάρχουν αρκετές ερευνητικές ομάδες που εργάζονται σε αυτή την κατεύθυνση χρησιμοποιώντας όργανα όπως είναι η «οικογένεια» των τηλεσκοπίων BICEP, το Τηλεσκόπιο του Νότιου Πόλου (South Pole telescope, SPT), το τηλεσκόπιο Polarbear και το διαστημόπλοιο Planck. Όλα αυτά τα όργανα έχουν διαπιστώσει ότι η μικροκυματική ακτινοβολία υποβάθρου είναι ασθενώς πολωμένη και μάλιστα με έναν ειδικό τρόπο που ονομάζεται «τρόπος-B» (B-mode), κατά τον οποίο η διεύθυνση πόλωσης αλλάζει με τη διεύθυνση παρατήρησης έτσι ώστε να δίνει την εικόνα ενός «στροβίλου». Αλλά η ύπαρξη του τρόπου-Β μπορεί να οφείλεται και σε άλλες αιτίες, πέρα από την παρουσία βαρυτικών κυμάτων. Η πρώτη ερευνητική ομάδα που ανακοίνωσε πόλωση που οφείλεται σε βαρυτικά κύματα είναι η ομάδα του BICEP2.
 
Γιατί στον Νότιο Πόλο;
Το ερευνητικό πρόγραμμα BICEP άρχισε παρατηρήσεις το 2006 με το τηλεσκόπιο πρώτης γενιάς, που λειτούργησε ως το 2008. Στη συνέχεια τη σκυτάλη πήρε το BICEP2, δέκα φορές πιο ευαίσθητο, που λειτούργησε για τρία χρόνια, από την αρχή του 2010 ως το τέλος του 2012. Αυτή τη στιγμή βρίσκονται σε λειτουργία άλλα δύο όργανα της ίδιας ομάδας, με ευαισθησία δέκα φορές καλύτερη από αυτήν του BICEP2. Όλα τα όργανα είναι εγκατεστημένα στην αμερικανική βάση Amundsen-Scott, που βρίσκεται πάνω στον γεωγραφικό Νότιο Πόλο. Η επιλογή της τοποθεσίας έγινε κατ’ αρχάς επειδή στη θέση αυτή η υγρασία της ατμόσφαιρας είναι ελάχιστη, αφού όλο το νερό υπάρχει σε μορφή πάγου. Έτσι η απορρόφηση των μικροκυμάτων που προκαλούν οι υδρατμοί της ατμόσφαιρας είναι ασήμαντη και η ποιότητα παρατήρησης είναι συγκρίσιμη με αυτήν από ένα διαστημόπλοιο, όπως είναι η αποστολή Planck. Υπάρχουν όμως και άλλα τρία σημαντικά πλεονεκτήματα: (α) οι ατμοσφαιρικές συνθήκες είναι εξαιρετικά σταθερές, γεγονός που ελαχιστοποιεί τις πηγές πιθανών σφαλμάτων της παρατήρησης, (β) η περιοχή παρατήρησης δεν αλλάζει ανάλογα με την ώρα της ημέρας, αφού τα ορατά αστέρια ούτε ανατέλλουν ούτε δύουν, και (γ) στη χαμηλή θερμοκρασία που επικρατεί εκεί είναι ευκολότερο να διατηρηθούν τα όργανα παρατήρησης στην εξαιρετικά χαμηλή θερμοκρασία που απαιτείται, μόλις 0,25 του βαθμού πάνω από το απόλυτο μηδέν, δηλαδή στους -272,9 βαθμούς Κελσίου.
BICEP2: υπερευαίσθητο και ευέλικτο
Το τηλεσκόπιο του BICEP2 έχει διάμετρο φακού μόλις 20 εκατοστά, ελάχιστη σε σύγκριση με τα όργανα παρατήρησης των άλλων ερευνητικών ομάδων που εργάζονται στο ίδιο αντικείμενο. Για παράδειγμα, το τηλεσκόπιο του προγράμματος SPT έχει διάμετρο 10 μέτρα, αυτό του προγράμματος Polarbear 2,5 μέτρα, ενώ το τηλεσκόπιο της διαστημικής αποστολής Planck έχει διάμετρο 1,7 μέτρα. Αλλά λόγω της μικρής διαμέτρου του τηλεσκοπίου BICEP2 αυτό έχει τη δυνατότητα να παρατηρεί πολύ μεγαλύτερο τμήμα του ουρανού από αυτό που παρατηρούν τα υπόλοιπα. Έτσι μπόρεσε να ανιχνεύσει διακυμάνσεις που έχουν μεγάλο μήκος κύματος και εκτείνονται σε μεγάλες αποστάσεις στον ουρανό, όπως είναι αυτές που οφείλονται στην αλληλεπίδραση βαρυτικών κυμάτων και πληθωριστικής διαστολής. Θα έλεγα όμως ότι σημαντικό ρόλο έπαιξε και η εξαιρετική ευαισθησία των ανιχνευτών της πόλωσης, οι οποίοι είναι αναπτυγμένοι επάνω στην εστία του τηλεσκοπίου και καταγράφουν την πόλωση της ακτινοβολίας σε δύο συχνότητες, 100 και 150 MHz (δηλαδή, περίπου όση είναι η συχνότητα εκπομπής των ραδιοφωνικών σταθμών FM).
Πόλωση με «βαρυτική» υπογραφή
Τα δεδομένα από τα τρία χρόνια παρατηρήσεων αναλύθηκαν με μεγάλη προσοχή και βρέθηκε ότι η πόλωση εμφανίζεται στην αναμενόμενη γωνιώδη απόσταση στον ουρανό και έχει εμφανή «στροβιλισμό», ο συνδυασμός των οποίων αποτελεί την υπογραφή της αλληλεπίδρασης του πληθωρισμού με βαρυτικά κύματα. Στη συνέχεια έγινε και ο απαραίτητος έλεγχος της σημαντικότητας αυτού του αποτελέσματος που κατέληξε στο συμπέρασμα ότι η πιθανότητα να οφείλεται το παρατηρούμενο αποτέλεσμα σε στατιστικές διακυμάνσεις και όχι στο ζητούμενο φυσικό φαινόμενο είναι μικρότερη από μία στις 2.000.000. Αυτό στη φιλοσοφία της επιστήμης θεωρείται βεβαιότητα.
Για τι πληθωρισμό μιλάμε;
Πέρα όμως από το γεγονός της πρώτης επιβεβαιωμένης στατιστικά ανίχνευσης του αποτυπώματος των βαρυτικών κυμάτων στην πόλωση της ακτινοβολίας μικροκυμάτων, που τονίζω ότι επιβεβαιώνει την υπόθεση ότι το Σύμπαν πέρασε από μια φάση πληθωριστικής διαστολής, πολύ σημαντικά είναι και τα ποσοτικά αποτελέσματα του πειράματος. Με άλλα λόγια, πόσο μεγάλο είναι το πλάτος των βαρυτικών κυμάτων και πώς αυτό εξαρτάται από το μήκος κύματός τους; Ειδικά το δεύτερο έχει ιδιαίτερο ενδιαφέρον επειδή συνδέεται με τις λεπτομέρειες του «είδους» πληθωρισμού για τον οποίον υπάρχουν σήμερα πολλά θεωρητικά μοντέλα. Εδώ θα πρέπει να σημειώσουμε ότι παραδοσιακά το πλάτος των βαρυτικών κυμάτων, AT,  μετρείται με την τιμή μιας παραμέτρου r = AT/AS , όπου το πλάτος των διαταραχών της πυκνότητας του Σύμπαντος, AS, έχει ήδη μετρηθεί από τη διαστημική αποστολή Planck.
Η απροσδόκητα υψηλή τιμή
Η τιμή r = 0,2 που μέτρησε η ομάδα BICEP2  θεωρείται εξαιρετικά υψηλή και δεν συμφωνεί ούτε με τις ως σήμερα παρατηρήσεις ούτε με τα θεωρητικά μοντέλα του πληθωρισμού που θεωρούνται σήμερα πιο αποδεκτά. Για παράδειγμα, η αποστολή Planck είχε θέσει ως ανώτερο όριο του πλάτους των βαρυτικών κυμάτων την τιμή r = 0,11. Πέρα όμως από αυτή την ασυμφωνία μεταξύ παρατηρήσεων, οι κοσμολόγοι αιφνιδιάστηκαν με την ανακοίνωση της τιμής r = 0,2 για έναν ακόμη θεωρητικό λόγο. Τα περισσότερα μοντέλα του πληθωρισμού δίνουν τιμές του r μικρότερες από 0,01!  Επομένως η τιμή r = 0,2 που μετρήθηκε αποτελεί μια μεγάλη πρόκληση για τους θεωρητικούς, υπό την  έννοια ότι θα πρέπει να προχωρήσουν σε μια γενναία αναθεώρηση των μοντέλων τους για τον πληθωρισμό, εφόσον βέβαια τα αποτελέσματα του BICEP2 επιβεβαιωθούν και από άλλες παρατηρήσεις.
 
Άλμα στον δρόμο για τη «θεωρία των Πάντων»
Πέρα από τα παραπάνω, οι παρατηρήσεις του BICEP2 έδωσαν δύο σημαντικά στοιχεία και στους φυσικούς των στοιχειωδών σωματιδίων. Το πρώτο είναι ότι και μόνη η νέα παρατήρηση δίνει στοιχεία για τη διασύνδεση της βαρύτητας με την κβαντομηχανική, κάτι που αναζητεί ακόμη μια σωστή θεωρητική προσέγγιση. Το δεύτερο είναι ότι βαρυτικά κύματα τόσο μεγάλου πλάτους συνεπάγονται ενέργειες στην περιοχή των οποίων αναμένεται η ενοποίηση των ηλεκτρικών με τις ασθενείς και τις ισχυρές πυρηνικές δυνάμεις. Έτσι έχουμε μπροστά μας ένα φυσικό εργαστήριο που μας επιτρέπει να μελετήσουμε αυτή την ενοποίηση χωρίς την ανάγκη να κατασκευάσουμε έναν επιταχυντή πολύ μεγαλύτερο από αυτόν του CERN. Η κατάσταση με την εξάρτηση του πλάτους των βαρυτικών κυμάτων από το μήκος κύματος φαίνεται πιο πολύπλοκη αυτή τη στιγμή και απαιτεί μάλλον μια αναλυτικότερη μελέτη της ανακοίνωσης της ομάδας BICEP2.
Μια ανακοίνωση, πολλά ερωτηματικά
Η ανακοίνωση των αποτελεσμάτων ενός πειράματος μέσω συνέντευξης Τύπου αποτελεί μια εντελώς ασυνήθιστη πρακτική στη διεθνή επιστημονική κοινότητα. Μια παρατήρηση αυτής της σημασίας θα περίμενε κανείς ότι θα είχε σταλεί για δημοσίευση σε ένα από τα δύο πιο έγκριτα επιστημονικά περιοδικά, είτε στο «Nature» είτε στο «Science». Τα περιοδικά αυτά έχουν πολύ αυστηρούς κανόνες για τη δημοσίευση επιστημονικών εργασιών και συγκεκριμένα απαιτούν την έγκριση της δημοσίευσης από τρεις ανεξάρτητους κριτές και την απαγόρευση οποιασδήποτε επίσημης ανακοίνωσης των αποτελεσμάτων πριν από την κυκλοφορία του τεύχους του περιοδικού στο οποίο αυτή δημοσιεύεται. Επομένως θα έλεγε κανείς ότι με την ανακοίνωση των αποτελεσμάτων σε μια συνέντευξη Τύπου οι συντελεστές του πειράματος «έκαψαν» την ανακάλυψή τους, υπό την έννοια ότι δεν θα μπορούσε να δημοσιευθεί σε κανένα από αυτά. Ο λόγος που ακολούθησαν τον συγκεκριμένο δρόμο δεν είναι προφανής αυτή τη στιγμή, αλλά θα πρέπει να σημειώσουμε τρία στοιχεία. Το πρώτο είναι ότι ο επικεφαλής του πειράματος John Kovac, καθηγητής του Πανεπιστημίου Harvard, δεν είναι ένας τυχαίος επιστήμονας στον χώρο. Το διδακτορικό του, πριν από 12 χρόνια, είχε για θέμα ακριβώς την πρώτη ανίχνευση πόλωσης στη μικροκυματική ακτινοβολία υποβάθρου. Επομένως η διεθνής επιστημονική κοινότητα λαμβάνει υπόψη πολύ σοβαρά τα αποτελέσματά του και τις απόψεις του. Το δεύτερο είναι ότι την περασμένη Τρίτη το περιοδικό «Nature», σε μια εντελώς ασυνήθιστη κίνηση, δημοσίευσε ένα «πακέτο» βίντεο και έντυπης ενημέρωσης με το οποίο στηρίζει θερμά τις ανακοινώσεις της ομάδας BICEP2. Επομένως είναι πιθανό για ένα θέμα αυτής της σημασίας το περιοδικό να θέσει σε δεύτερη μοίρα τους κανόνες δημοσίευσης που παραδοσιακά ακολουθεί. Το τρίτο είναι ότι αυτή τη στιγμή υπάρχουν καμιά δεκαριά ερευνητικές ομάδες που εργάζονται στην ανίχνευση βαρυτικών κυμάτων μέσα από τη μελέτη της πόλωσης της μικροκυματικής ακτινοβολίας υποβάθρου. Είναι πιθανό μία από αυτές να έχει καταλήξει στο ίδιο αποτέλεσμα ή ακόμη και να έχει στείλει ήδη για δημοσίευση σε κάποιο περιοδικό μια παρόμοια ανακάλυψη, οπότε τίθεται θέμα προτεραιότητας στην περίπτωση ενός μελλοντικού βραβείου Νομπέλ.
Ο κ. Χάρης Βάρβογλης είναι καθηγητής του Τμήματος Φυσικής του ΑΠΘ.

Η ισχυρότερη έκρηξη στο σύμπαν μετά το Bing Bang

Η ισχυρότερη και 746305main_swift_xrtμεγαλύτερης διάρκειας έκρηξη ακτίνων γάμμα που έχει ποτέ παρατηρηθεί στο σύμπαν από τη Γη. Η μόνη πιο ισχυρή έκρηξη που ξέρουν -ή μπορούν να φανταστούν- οι επιστήμονες, είναι η ίδια η Μεγάλη Έκρηξη (Μπιγκ μπανγκ) που δημιούργησε το σύμπαν.

Μία «τερατώδης» -όπως την αποκάλεσαν οι αστρονόμοι- έκρηξη ακτίνων γάμμα, που συνέβη σε ένα μακρινό γαλαξία σε απόσταση 3,7 δισεκατομμυρίων ετών φωτός, όταν το σύμπαν είχε ηλικία 9,9 δισεκατομμυρίων ετών, είναι η ισχυρότερη, φωτεινότερη και μεγαλύτερης διάρκειας που έχει ποτέ παρατηρηθεί από τη Γη. Αν είχε συμβεί πιο κοντά, ο πλανήτης και η ζωή πάνω σε αυτόν θα είχαν «ψηθεί».

Η μόνη πιο ισχυρή έκρηξη που ξέρουν -ή μπορούν να φανταστούν- οι επιστήμονες, είναι η ίδια η Μεγάλη Έκρηξη (Μπιγκ μπανγκ) που δημιούργησε το σύμπαν. Οι εκρήξεις ακτίνων γάμμα λαμβάνουν χώρα, όπως πιστεύουν οι αστροφυσικοί, όταν ένα τεράστιο άστρο πεθαίνει καταρρέοντας βαρυτικά σε μια νέα μαύρη τρύπα, δημιουργώντας μια σούπερ-νόβα και εκτοξεύοντας παράλληλα στις εσχατιές του διαστήματος πανίσχυρους «πίδακες» ακτινοβολίας πολύ υψηλής ενέργειας, η οποία ταξιδεύει στο σύμπαν με την ταχύτητα του φωτός. Οι ακτίνες γάμμα είναι η μορφή του φωτός με την μεγαλύτερη ενέργεια στο ηλεκτρομαγνητικό φάσμα (τουλάχιστον 500.000 φορές ισχυρότερη από το ορατό φως).

Τα τηλεσκόπια παρατηρούν τέτοιες εκρήξεις ακτίνων γάμμα εδώ και τουλάχιστον 20 χρόνια, με ρυθμό πλέον περίπου μία ανά διήμερο. Όμως η συγκεκριμένη έκρηξη ξεχωρίζει με την ισχύ και τη λαμπρότητά της από οποιαδήποτε άλλη μέχρι σήμερα, καθώς ήταν πέντε φορές ισχυρότερη από την μέχρι σήμερα κάτοχο του ρεκόρ (είχε παρατηρηθεί το 1999).

Οι επιστήμονες, που μελέτησαν το εντυπωσιακό -και τρομακτικό- φαινόμενο, έκαναν τέσσερις ξεχωριστές δημοσιεύσεις στο περιοδικό «Science», σύμφωνα με το BBC και το «New Scientist». Όπως εκτιμούν, η έκρηξη (με ενέργεια που έφθασε τα 95 GeV και διάρκεια 20 ολόκληρες ώρες) προήλθε από ένα άστρο με μάζα 20 έως 30 φορές μεγαλύτερη του Ήλιου και πολύ μεγαλύτερης πυκνότητας.

Η έκρηξη με την ονομασία GRB 130427A -που έγινε αντιληπτή φέτος τον Απρίλιο από τα διαστημικά τηλεσκόπια «Swift» και «Fermi» της NASA και έκτοτε ήταν αντικείμενο μελέτης- πιθανώς φάνηκε τόσο ισχυρή στη Γη λόγω της σχετικά «μικρής» απόστασης που συνέβη, καθώς οι προηγούμενες εκρήξεις γάμμα, οι οποίες εμφάνισαν μικρότερη ένταση και διάρκεια, είχαν γίνει σε πολύ μεγαλύτερες αποστάσεις από τον πλανήτη μας.

Οι επιστήμονες θεωρούν ότι είναι πολύ μικρή η πιθανότητα (μία στα δέκα εκατομμύρια) να συμβεί μια τέτοια πανίσχυση έκρηξη στο δικό μας γαλαξία, δηλαδή κοντά μας, πράγμα που μπορεί να είχε ολέθριες συνέπειες για την ανθρωπότητα. Ακόμα και τότε, όμως, θα έπρεπε η «ακτίνα θανάτου» από την έκρηξη συμπτωματικά να στοχεύει απευθείας τη Γη για να την «ψήσει».

Πάντως, ο καθηγητής αστρονομίας Πολ Ο’Μπράιαν του πανεπιστημίου του Λέστερ δήλωσε ότι «αυτές οι εκρήξεις μπορούν να συμβούν σε οποιοδήποτε γαλαξία οποιαδήποτε στιγμή. Δεν έχουμε κανένα τρόπο να τις προβλέψουμε». Όπως είπε, η πρόβλεψη είναι ότι «θα μπορούσε να συμβαίνει μια έκρηξη ακτίνων γάμμα αρκετά κοντά στη Γη για να μας βλάψει, κάθε 500 εκατ. χρόνια. Κάποια στιγμή στην ιστορία της Γης πιθανότατα ακτινοβοληθήκαμε από μία τέτοια έκρηξη και κάτι ανάλογο θα συμβεί ξανά κάποτε στο μέλλον. Όμως η πιθανότητα να συμβεί όσο ζούμε, είναι πολύ μικρή».

πηγή: http://portal.kathimerini.gr/4dcgi/_w_articles_kathciv_1_22/11/2013_529055

O πιο μακρινός γαλαξίας γεννήθηκε λίγο μετά το Σύμπαν

Λονδίνο

Ο πιο μακρινός γαλαξίας που έχει ανακαλυφθεί ως σήμερα εντοπίσθηκε από διεθνή ομάδα επιστημόνων. Ο zb_GND_5296, όπως είναι το διόλου εντυπωισακό όνομά του, βρίσκεται 13 και πλέον δισεκατομμύρια έτη φωτός μακριά από τη Γη και υπολογίζεται ότι είχε ήδη γεννηθεί όταν το Σύμπαν ήταν μόλις 700 εκατομμυρίων ετών. Η ανακάλυψη θεωρείται ότι θα βοηθήσει τους αστρονόμους να ρίξουν φως σε μια «στιγμή» του κόσμου μας που ακολούθησε αμέσως μετά τη Μεγάλη Εκρηξη.

Σημαντική επιβεβαίωση
Ο zb_GND_5296 δεν είναι «καινούργιος» για τους επιστήμονες. Είχε εντοπισθεί από το τηλεσκόπιο Χαμπλ, αλλά η απόστασή του δεν είχε υπολογιστεί επακριβώς. Αυτό επετεύχθη τώρα από αστρονόμους με επικεφαλής τον Στίβεν Φίνκελσταϊν του Πανεπιστημίου του Τέξας στο Οστιν που χρησιμοποίησαν δεδομένα του Αστεροσκοπείου Κεκ στη Χαβάη. «Αυτός είναι ο πιο μακρινός γαλαξίας που έχουμε επιβεβαιώσει ως τώρα» δήλωσε ο δρ Φινκελστάιν. «τον βλέπουμε όπως ήταν 700 εκατομμύρια χρόνια μετά το Μπιγκ Μπανγκ».
Επειδή το φως χρειάζεται τόσο χρόνο για να ταξιδέψει και να φθάσει ως εμάς από την άκρη του Σύμπαντος οι επιστήμονες βλέπουν τον γαλαξία όπως ήταν πριν από 13,1 δισεκατομμύρια χρόνια. Προκειμένου να υπολογίσουν την απόστασή του οι ειδικοί ανέλυσαν το χρώμα του. Καθώς το Σύμπαν διαστέλλεται τα αντικείμενα που βλέπουμε γύρω μας απομακρύνονται από τη Γη, με αποτέλεσμα τα κύματα του φωτός που εκπέμπουν να επιμηκύνονται και να φαίνονται πιο κόκκινα από ό, τι είναι στην πραγματικότητα. Αυτή η αλλαγή στο χρώμα ονομάζεται μετατόπιση προς το ερυθρό και μετράται με μια συγκεκριμένη κλίμακα.
galaxias1

 

Καλλιτεχνική απεικόνιση του zb_GND_5296, του πιο μακρινού γαλαξία που βρίσκεται
σε απόσταση 30 δισεκατομμυρίων ετών φωτός από τη Γη (Πηγή V. Tilvi, S.L.
Finkelstein, C. Papovich, NASA, ESA, A. Aloisi, The Hubble Heritage, HST, STScI,
και AURA).
Όπως περιγράφουν στη μελέτη τους που δημοσιεύθηκε
στην επιθεώρηση «Nature» οι αστρονόμοι που ανέλυσαν το χρώμα του zb_GND_5296
είδαν ότι έχει μετατόπιση προς το ερυθρό 7,51, μεγαλύτερη από αυτή του μέχρι
τώρα θεωρούμενου μακρινότερου γαλαξία ο οποίος έχει μετατόπιση προς το ερυθρό
7,21. Ο νεος κάτοχος του ρεκόρ της απόστασης είναι μικρός – η μάζα του είναι ίση
μόλις με το 1-2% της μάζας του Γαλαξία. Είναι όμως πλούσιος σε βαρέα στοιχεία
και έχει ένα εξαιρετικό χαρακτηριστικό, «γεννά» νέα άστρα με εκπληκτική
ταχύτητα, εκατοντάδες φορές μεγαλύτερη από αυτή με την οποία μπορεί να
δημιουργήσει άστρα ο δικός μας γαλαξίας.
galaxias2Όλα σχεδόν τα αντικείμενα σε αυτή την εικόνα του Τηλεσκοπίου Χαμπλ είναι γαλαξίες. Ο zb_GND_5296 φαίνεται στη μεγέθυνση σε πλαίσιο (Πηγή V. Tilvi,
S.L. Finkelstein, C. Papovich, NASA, ESA, A. Aloisi, The Hubble Heritage, HST, STScI, και AURA)

Νέες γνώσεις από πολύ μακριά

Η ανακάλυψη θεωρείται ότι θα προσφέρει στους επιστήμονες
νέες γνώσεις για τα πρώτα στάδια του Σύμπαντος. «Ενας πολύ ενδιαφέρων τρόπος για
να μάθουμε πράγματα για το Σύμπαν είναι να μελετήσουμε αυτές τις εσχατιές, και
αυτό μας λέει κάτι σχετικά με το τι είδους φυσικές διαδικασίες επικρατούν στον
σχηματισμό και την εξέλιξη των γαλαξιών» τόνισε ο δρ Φινκελστάιν. «Το σπουδαίο
με αυτόν τον γαλαξία είναι ότι δεν είναι μόνο μακρινός αλλά είναι επίσης
εξαιρετικός». Ο ερευνητής πρόσθεσε ότι θεωρεί πως ακόμη πιο μακρινοί γαλαξίες θα
ανακαλυφθούν στο άμεσο μέλλον, όταν το νέο τηλεσκόπιο Τζέιμς Γουέμπ (James Webb
Space Telescope – JWST).

Σχολιάζοντας τα αποτελέσματα στο BBC ο δρ Μάρεκ
Κούκουλα του Βασιλικού Αστεροσκοπείου στο Γκρίνουιτς ο οποίος δεν μετείχε στη
μελέτη δήλωσε: «Αυτά σε συνδυασμό με άλλα στοιχεία δείχνει ότι υπάρχουν ήδη
κάποιοι μάλλον εκπληκτικά εξελιγμένοι γαλαξίες στα πρώτα στάδια του Σύμπαντος.
Αυτός ο ταχύς ρυθμός δημιουργίας άστρων ίσως αποτελεί μια ένδειξη σχετικά με το
γιατί οι γαλαξίες αυτοί μπορούν να σχηματιστούν τόσο γρήγορα».

πηγή: http://news.in.gr/science-technology/article/?aid=1231270595